Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stability and degradation of unencapsulated CuPc bilayer heterojunction cells under different atmospheric conditions

Identifieur interne : 000042 ( Main/Repository ); précédent : 000041; suivant : 000043

Stability and degradation of unencapsulated CuPc bilayer heterojunction cells under different atmospheric conditions

Auteurs : RBID : Pascal:14-0046534

Descripteurs français

English descriptors

Abstract

The stability of small molecule copper phthalocyanine bilayer organic solar cells (ITO/PEDOT:PSS/CuPc/ PTCDI/Ag) was investigated without encapsulation for 70 days. Photovoltaic performance characteristics were measured as a function of the age of solar cells without illumination (except during testing) under vacuum, dry air (0% humidity), and standard air conditions. The solar cells exposed to dry air and standard air atmosphere showed a rapid degradation in their efficiencies during the measured period. It was found that oxygen has a strong negative influence on the efficiency even in the absence of humidity. In vacuum, we observed a small increase in the performances of organic solar cells for the first days, possibly due to removal of oxygen from the cells, followed by a minor degradation over the measurement period. Moving the cell from vacuum into a dry oxygen atmosphere led to rapid degradation in their efficiencies. A film of CuPc layer exposed to air results in a steady increase in the resistivity of the device.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0046534

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Stability and degradation of unencapsulated CuPc bilayer heterojunction cells under different atmospheric conditions</title>
<author>
<name sortKey="Al Amara, Mohammad M" uniqKey="Al Amara M">Mohammad M. Al-Amara</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Western Michigan University</s1>
<s2>Kalamazoo, MI 49008</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Kalamazoo, MI 49008</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hamam, Khalil J" uniqKey="Hamam K">Khalil J. Hamam</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Western Michigan University</s1>
<s2>Kalamazoo, MI 49008</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Kalamazoo, MI 49008</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Applied Physics Department, Tafila Technical University</s1>
<s2>Tafila</s2>
<s3>JOR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Jordanie</country>
<wicri:noRegion>Tafila</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mezei, Gellert" uniqKey="Mezei G">Gellert Mezei</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, Western Michigan University</s1>
<s2>Kalamazoo, MI 49008</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Kalamazoo, MI 49008</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guda, Ramakrishna" uniqKey="Guda R">Ramakrishna Guda</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry, Western Michigan University</s1>
<s2>Kalamazoo, MI 49008</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Kalamazoo, MI 49008</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Burns, Clement A" uniqKey="Burns C">Clement A. Burns</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Western Michigan University</s1>
<s2>Kalamazoo, MI 49008</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Kalamazoo, MI 49008</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0046534</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0046534 INIST</idno>
<idno type="RBID">Pascal:14-0046534</idno>
<idno type="wicri:Area/Main/Corpus">000168</idno>
<idno type="wicri:Area/Main/Repository">000042</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air conditioning</term>
<term>Air humidity</term>
<term>Atmospheric condition</term>
<term>Bilayers</term>
<term>Copper complex</term>
<term>Damaging</term>
<term>Degradation</term>
<term>Diimide</term>
<term>Dry atmosphere</term>
<term>Electrical conductivity</term>
<term>Encapsulation</term>
<term>Heterojunction</term>
<term>Illumination</term>
<term>Indium oxide</term>
<term>Metallophthalocyanine</term>
<term>Organic solar cells</term>
<term>Oxygen</term>
<term>Performance characteristic</term>
<term>Performance evaluation</term>
<term>Perylene derivatives</term>
<term>Polymer blends</term>
<term>Resistivity</term>
<term>Small molecule</term>
<term>Solar cell</term>
<term>Standards</term>
<term>Styrenesulfonate polymer</term>
<term>Thin film</term>
<term>Thiophene derivative polymer</term>
<term>Tin addition</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Endommagement</term>
<term>Dégradation</term>
<term>Hétérojonction</term>
<term>Condition météorologique</term>
<term>Cellule solaire organique</term>
<term>Addition étain</term>
<term>Encapsulation</term>
<term>Caractéristique fonctionnement</term>
<term>Evaluation performance</term>
<term>Cellule solaire</term>
<term>Eclairement</term>
<term>Humidité air</term>
<term>Norme</term>
<term>Conditionnement air</term>
<term>Atmosphère sèche</term>
<term>Conductivité électrique</term>
<term>Résistivité</term>
<term>Phtalocyanine métallique</term>
<term>Complexe de cuivre</term>
<term>Bicouche</term>
<term>Molécule petite</term>
<term>Oxyde d'indium</term>
<term>Styrènesulfonate polymère</term>
<term>Thiophène dérivé polymère</term>
<term>Mélange polymère</term>
<term>Dérivé du pérylène</term>
<term>Diimide</term>
<term>Oxygène</term>
<term>Couche mince</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Norme</term>
<term>Oxygène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The stability of small molecule copper phthalocyanine bilayer organic solar cells (ITO/PEDOT:PSS/CuPc/ PTCDI/Ag) was investigated without encapsulation for 70 days. Photovoltaic performance characteristics were measured as a function of the age of solar cells without illumination (except during testing) under vacuum, dry air (0% humidity), and standard air conditions. The solar cells exposed to dry air and standard air atmosphere showed a rapid degradation in their efficiencies during the measured period. It was found that oxygen has a strong negative influence on the efficiency even in the absence of humidity. In vacuum, we observed a small increase in the performances of organic solar cells for the first days, possibly due to removal of oxygen from the cells, followed by a minor degradation over the measurement period. Moving the cell from vacuum into a dry oxygen atmosphere led to rapid degradation in their efficiencies. A film of CuPc layer exposed to air results in a steady increase in the resistivity of the device.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>121</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Stability and degradation of unencapsulated CuPc bilayer heterojunction cells under different atmospheric conditions</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AL-AMARA (Mohammad M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HAMAM (Khalil J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MEZEI (Gellert)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GUDA (Ramakrishna)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BURNS (Clement A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Western Michigan University</s1>
<s2>Kalamazoo, MI 49008</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemistry, Western Michigan University</s1>
<s2>Kalamazoo, MI 49008</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Applied Physics Department, Tafila Technical University</s1>
<s2>Tafila</s2>
<s3>JOR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>152-156</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000501670640230</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0046534</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The stability of small molecule copper phthalocyanine bilayer organic solar cells (ITO/PEDOT:PSS/CuPc/ PTCDI/Ag) was investigated without encapsulation for 70 days. Photovoltaic performance characteristics were measured as a function of the age of solar cells without illumination (except during testing) under vacuum, dry air (0% humidity), and standard air conditions. The solar cells exposed to dry air and standard air atmosphere showed a rapid degradation in their efficiencies during the measured period. It was found that oxygen has a strong negative influence on the efficiency even in the absence of humidity. In vacuum, we observed a small increase in the performances of organic solar cells for the first days, possibly due to removal of oxygen from the cells, followed by a minor degradation over the measurement period. Moving the cell from vacuum into a dry oxygen atmosphere led to rapid degradation in their efficiencies. A film of CuPc layer exposed to air results in a steady increase in the resistivity of the device.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06D08D2</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Endommagement</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Damaging</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Deterioración</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Dégradation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Degradation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Degradación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Condition météorologique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Atmospheric condition</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Condición meteorológica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Encapsulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Encapsulation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Encapsulación</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Caractéristique fonctionnement</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Performance characteristic</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Característica funcionamiento</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Eclairement</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Illumination</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Alumbrado</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Humidité air</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Air humidity</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Humedad aire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Norme</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Standards</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Norma</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Conditionnement air</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Air conditioning</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Acondicionamiento aire</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Atmosphère sèche</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Dry atmosphere</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Atmósfera seca</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Conductivité électrique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Electrical conductivity</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Conductividad eléctrica</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Résistivité</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Resistivity</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Resistividad</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Phtalocyanine métallique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Metallophthalocyanine</s0>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Ftalocianina metálica</s0>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Complexe de cuivre</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Copper complex</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Cobre complejo</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Bicouche</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Bilayers</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Molécule petite</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Small molecule</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Molécula pequeña</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Styrènesulfonate polymère</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Styrenesulfonate polymer</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Estireno sulfonato polímero</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Thiophène dérivé polymère</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Thiophene derivative polymer</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Tiofeno derivado polímero</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Mélange polymère</s0>
<s5>29</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Polymer blends</s0>
<s5>29</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Dérivé du pérylène</s0>
<s5>30</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Perylene derivatives</s0>
<s5>30</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Perileno derivado</s0>
<s5>30</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Diimide</s0>
<s5>31</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Diimide</s0>
<s5>31</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Diimida</s0>
<s5>31</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Oxygène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Oxygen</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Oxígeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>32</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>33</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>33</s5>
</fC03>
<fC03 i1="29" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>33</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fN21>
<s1>055</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000042 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000042 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0046534
   |texte=   Stability and degradation of unencapsulated CuPc bilayer heterojunction cells under different atmospheric conditions
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024